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Minimal flavor violation

® The standard model (SM) has been successful in describing data on
flavor-changing neutral currents and CP violaton in the quark sector.

® This motivates the formulation of the principle of minimal flavor violation

for quarks: Yukawa couplings are the only sources for the breaking of

ﬂaVOF and CP Symmetries. Chivukula & Georgi
Hall & Randall

Buras et al.

D'Ambrosio et al.
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® It is interesting to extend the MFV principle to the lepton sector

s which may help pin down the origin of neutrino mass cirigliano etal

s although the are ambiguities in implementing leptonic MFV.

® Another major mystery is the identity of the constituents of dark matter.
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® This motivates the formulation of the principle of minimal flavor violation
for quarks: Yukawa couplings are the only sources for the breaking of

ﬂaVOF and CP Symmetries. Chivukula & Georgi
Hall & Randall

Buras et al.
D'Ambrosio et al.

® It is interesting to extend the MFV principle to the lepton sector

s which may help pin down the origin of neutrino mass cirigliano etal

s although the are ambiguities in implementing leptonic MFV.

® Another major mystery is the identity of the constituents of dark matter.

® It is then also of interest to explore scenarios that address the neutrino
and DM puzzles simultaneously.

® We do this with lepton-flavored scalar DM

s in analogy to quark-flavored DM with MFV. Batell, Pradler, Spannowsky

Batell, Lin, Wang
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Kinetic terms of SM fermions plus three RH neutrinos

+ The kinetic Lagrangian of quarks and leptons, including 3 right-handed neutrinos,
Ly = inL&QjL T iﬁjRﬁUjR T iDjRﬂDjR T iEjLE"LjL T iﬂjﬁﬁujﬁ + iEjRﬁEjR
J. .
where 7 =1,2,3 are summed over, Q;r = Uit . Ljo = [ L
D, lir

{Ula UE*J [Iﬂl — {T.L. E!t}! (-Dla -DE- -Dﬂ} — [d*'szb],- (El*Ez}Eﬂ} — [‘EI}EE-‘EB} — {E!“'!T}

¢+ Thisis invariant under the global flavor rotations

Q1 Uir Dir
Qr=| Qe | ?VpQr: Up=\|Uypp | 2> VyUr, Dp=| Dy | V,Dy
Qs Usp D,y
Ly, YR Ein
L,=|\Ly,, | >V, L;,, vp=|Vyp | > V,vg., E,=|E,, | >V E,
Ly, Vag Esn

where VYV, € U(3)y

+ Thus the kinetic terms are symmetric under the global group
U3)e xUB)y x U(3)p x U(3)r x U(3), x U(3)Ek. Chivukula & Georgi
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Mass terms of SM fermions plus three RH neutrinos
* The Lagrangian responsible for fermion masses

JE:m QkL(Ki)M U QLL{YE]HDL_RH

I’k=L{E~")kEUE=RH hL(Y)HE H — % R[ﬂfv}u IR + H.c.

where k,l=1,2,3 are summed over, Y,a.. are Yukawa coupling matrices,
M, is the Majorana mass matrix of the right-handed neutrinos,

. . 0 -
and H is the Higgs doublet H = (%(Mv))‘ H = io,H*

* These mass terms explicitly break the global flavor group

U(S}Q X U(g)L X U{g]j_'} K U(S]L X U(B)u X U(g)E

* The idea of minimal flavor violation presupposes that all flavor- and C P-violating
interactions are linked to the known structure of Yukawa couplings. D'Ambrosio et al

* Accordingly, new effective interactions which violate flavor and CP symmetries
must respect the symmetry properties of the Yukawa couplings.
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Lepton MFV in SM plus 3 RH neutrinos

If neutrinos are Dirac fermions, the Majorana mass terms are absent, M, = 0.

Then the MFV hypothesis implies that the lepton Lagrangian is formally invariant
under the global group U(3), x U(3), x U3)g =G, x U(1), x U(1), x U(1)g
where Gy =SU(3)r x SU(3), X SU(3)E. D’Ambrosio et al., 2002

Cirigliano et al., 2005

Then Ly, ver, and E,r transform as fundamental representations of G,
L, »V,L,, v, — Vv E, — V,E Vi,e € SU(3)

R v R? ETR?

and the Yukawa couplings are taken to be spurions transforming as

Y, > V,Y,VI. Y = VYV

We work in the basis where Y, is diagonal, Y. = v/2 diag(m,. m,,m_)/v

and vy, vir, Err, and E, g refer to the mass eigenstates.

(UPMNS}kiyLL \/E .
Hence L., = ( E A Yo = — U s ™y,
kL v
m, = diag(m,, m,, my) with m,,, being the light neutrino eigenmasses.

J Tandean 31 October 2014 8



Lepton MFV with Majorana neutrinos

If neutrinos are Majorana fermions, generally M, # 0.

For M, > Mp = vY,/+/2 the seesaw mechanism is activated involving

0 M,
ME M,

MNS L?

the 6 X6 neutrino mass matrix M = ( ) in the (U%,, VS5, v,)T basis.

The resulting matrix of light neutrino masses is

2

v A

m, = ——Y MYT = U m UT
I 2 i s s 4

PMINS PMINS

Now Upyns CONtaining P = diag(ei®/2, e*2/2,1) multiplied from the right,
o, , being the Majorana phases.

Thus Y, needs to be modified, and one can instead take Y, to be

v

}L U Thi’xﬂfjﬂ{f:’fz Casas & Ibarra

PMNS

where O satisfles OOT =1 and M, = diag(M;, Ms, M3).
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Lagrangians beyond SM with MFV buili-in

To have new interactions, one inserts Y (1) and their products among SM and
new fields to form operators invariant under G, = SU(3), x SU(3), x SU(3)z
and singlet under the SM gauge group.

Of interest hereare A=Y Y and B=Y Y

Assuming neutrinos to be Majorana fermions, we take v, ,, to be degenerate,
with M, = M1, and O real.

2 :
Hence A =YY = — MU, ﬁl”[ﬁ with m = diag(m,, m,, m,)

LT 1 PMNS PMMNS 27
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Lepton-flavored scalar triolet

[y

*x SM-gauge-singlet scalar Gy-triplet 35 = ~ (3,1,1)

ot Gnt Ooi
b2

L]

where G, =SU(3). x SU(3), x SU(3)g
*» For DM stability, invoke a Z, symmetry: 5 — —3
» Scalar potential in renormalizable Lagrangian

V= HH+:5u54+ ), (HH)?+2H H3AL5+ (5TAs:5)°

H
O &t (2 1+ p2 A+ p2,A%)5 + 2HTH 81 (A, 1+ A A + A ,A?)3
with A =YY/ assumed to have elements > than those of B =Y, Y]

and the Higgs doublet H = ( v )

v%(h + v)
*» Since A is Hermitian, A = U diag(A{,A2,A3)UY" where U is a unitary matrix
. L"::"‘1
* |n terms of mass eigenstates s = | S, | = ufs
S,
L D —m3 S;S, — A, (h® 4+ 2hv)S; S, — (X, 5;S,)*

2 __ 2 2 2 2 2 4 9 2 B " .9
where Mg, = M T AU e = B F G AL AL AL = A T ALAL T ALA,



DM relic density & annihilation

- 2.14x10% 2, /GeV 0.038 my mp, (@ + 6b/x,)

* Relic density Qh? = - . , z, = In
VI, mp(a+3b/x,) V0. Z;
where o v2 = a-+ bv_, isthe rate of S:S, annihilation into SM particles.
*» Annihilation diagrams with h-s renormalizable couplings
S3
aq, £f, 99, £Z, “,r+'“;—’
Sa
53 h 53 h S3———------- h 53 s h
+ Sahth + Sq + Sq :‘
'513 |.m"'.h- 5|3 |.m"'.h- |S|3 """" h Sa “‘!1
SE fT'r..LJ"F
* Annihilation diagrams with lepton-5 effective couplings
Sg £
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Higgs experiment & DM direct search constraints

e If 2mg < mp, the hSy couplings must satisfy the limit on the branching ratio
B(h - invisible/exotic) < 19% from collider data.

B(h— SS) =

SM :
¥ + ; Lhs;s,

Sk
Sy
A2 2 4m%
h—38*8. — > = =k, my, = 125.1 GeV |
OOy 4Tr?nh '?n% ;

® DM direct search constraints apply only to the hS3 coupling, As.

J Tandean

J‘_';:g*j ¥ JS':{;t:]
: 2 2 2 2
5 gﬁi" _ A3 g NV T
1 =} - F;
:h’ T (-m S4 + My ) 2 mi
N — H N
gNNhR

31 October 2014

Falkowski, Riva, Urbano
Giardino et al.

Belanger et al.

Cheung, Lee, Tseng

TSM = 4,08 MeV

13



Results for i3

e We assume the neutrino mass inverted hierarchy with m3 = 0, require the largest
eigenvalue of A to have a size of 1, and pick 2, + A v = 12 + 207 = p2 + A 0”

for 2(ps1 + A0 )My, A + Agv?) MPmy,
A

2 9 9
Mg, = fg + AV + 5 +

U U

® Values of [A3]| satisfying the relic constraint (green solid curve) compared with
upper limits on |A3| from Higgs invisible/exotic decay data (dotted black curve)

and from LUX (red dashed curve). 0.500 | | | | |
poc2014 QA2 = 0.1198 + 0.0026 \,%
0.100 + \ e
0.050 A prd ]
|I N \.;. ,;*/’,
[\
Hence the A3 contribution to the i
relic density is small for 0.010F ;f;.J‘f :
ms, < O(100 GeV) except near 0.005 frez---mmmmon ” )
| N N | .‘ PR | | N N | N
M/ 2. 10 20 50 100 200 500

myg, (GeV)
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Effective dimension-six lepton-S couplings

» Effective dimension-6 operators satisfying the MFV requirement and coupling SM
leptons to s

(“L (“FR CTLH
v “bdll AL “bdkl R ‘bdkl LR
L = TAZ Opars T TAZ Opart + (_,13 Opary + Hf)

b.d,k,l =1,2,3 are summed over,
CrdekI — (&Lﬂjbd(&ﬂﬂ)kf T (&LS)M{&EL)J::-J + (&Lﬂ)kd(&ﬂf}bi ’ O;}m — if‘b.L'TpLd.L 523955

;s _ ’ R LS el ~p o~
Crart = Opq (A%s) ke » Opart = 1By g Ed._HSk 9,5

Charr = (A Ye) (AL + (ALe)u(Asy Ye)ka » Oyt =Ly By n 505, H

The mass scale A characterizes the underlying heavy new physics.

» Assume A = £ 1+ & A+EA
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Effective dimension-six lepton-S couplings

» Effective dimension-6 operators satisfying the MFV requirement and coupling SM
leptons to s

C;rdhi C;f.i.,:’ Cib[‘cﬁl
£ = =% Ot =z Oban + (T Opa + Hf)
b,d,k,l =1,2,3 are summed over,
C;dm = (Arr)pg(Ass)yy + (Ars)py(Asc) g + (Ars)pa(Ase)y s Oé}m — i‘Eb.LT‘DLd.L 523,:.55

;s _ ’ R LS el ~p o~
Crart = Opq (A%s)kr » Opart = 1By g Ed._RS.L: 8,5

Crait = (AryYe) (A + (AL n(Asy Ye)ra » Oyt = ‘Eb.LEd._Hg;gIH

The mass scale A characterizes the underlying heavy new physics.
» Assume A = £ 1+ &6 A+E,A

» For simplicity, take

\/EF& T
LE LR £4 L R .
Crart = y 0410 gy s Cpary = 260,04 5 Ciparr = KRrO%q 0
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Effective couplings satisfying relic data

e The effective dimension-six operators (0", Of, and O*%) contribute to S,
annihilations into ¢¢, and (for O*) v,v, pairs.

® They need to be consistent with the observed relic abundance.

poc 2014 202 = 0.1198 + 0.0026

J Tandean 31 October 2014
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Effective lepton-S couplings satisfying relic data

e The effective dimension-six operators (0", Of, and O*%) contribute to S,
annihilations into ¢¢, and (for O*) v,v, pairs.

® They need to be consistent with the observed relic abundance.

(Qh% = 0.1198 £ 0.0026 1000

PDG 2014

500

200

A (GeV)

100 IR

50

10 20 50 100 200 500
ms, (GeV)

@ In the orange region, corresponding to 2nA/k|"* < ms,, the effective theory
description breaks down. Goodman et al.
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Constraints from flavor-changing lepton decays

® The effective dimension-six ¢¢S’'S ouplings can also induce,
at one loop, flavor-changing lepton decays ¢, — ¢ (54,

J Tandean 31 October 2014
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Constraints from flavor-changing lepton decays

® The effective dimension-six ¢¢S’'S ouplings can also induce,

£a
at one loop, flavor-changing lepton decays ¢, — ¢ (54,

Ej_ = = E;&

e The Kk , contributions consistent with the relic density data are well
above the lower limit inferred from experimental bounds on these decays.

J Tandean 31 October 2014
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Constraints from flavor-changing lepton decays

L4
® The effective dimension-six ¢¢S’'S ouplings can also induce, ta
at one loop, flavor-changing lepton decays ¢, — ¢ (54,
fj_ - - Eg

e The Kk , contributions consistent with the relic density data are well
above the lower limit inferred from experimental bounds on these decays.

e But the corresponding k, contributions are in conflict with the flavor-violating
decay data if mg, > 500 GeV.

s The red solid curve indicates the 1000 7
lower limit from B(u-3e) data. /
500F -
—_ t.,s-*"’j{ﬂ ,/"/
- /-f"“”f -
E 200 ‘_ﬂ,.ﬁof-‘"’”’g d |
{: - u /’/
100+ 5 v |
50l e ]
,/// | | | | |
10 20 50 100 200 500
mg, (GeV)
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Potential implications for h— u t

® CMS recently observed a slight excess of h—- ur at 2.50

s Ifasignal, B(h-pu7)= (0.89104)%

a |f a statistical fluctuation, B(h - u7) <1.57% at 95% CL.

@ QOther data from ATLAS & CMS, respectively:
a ho1r olo.,, = 1427038 and 0.91 £ 0.27

s B(h— pji) < 1.5x 1073 and 1.6 x 1073

J Tandean 31 October 2014
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Potential implications for h— u t
® CMS recently observed a slight excess of h—- ur at 2.50
s Ifasignal, B(h- ut) = (0.89739)%
a |[f a statistical fluctuation, B(h - u7)<1.57% at 95% CL.
@ QOther data from ATLAS & CMS, respectively:
s hotr oo, = 1427038 and 0.91 £ 0.27

s B(h— pji) < 1.5x 1073 and 1.6 x 1073

@ At one loop, Sk can contribute to h— uz mainly via homsese

® The S, contribution yields

s 0.52%<B(h—-pur)<0.79% with =A;,~2.4-7.2 and A;~ 0 if Kk,
(ms, ,\) ~ (70-200,78) GeV.

s 1.6 < Dhorr /TSN < 1.8

h—1T ™

s B(r- uy) over 30 times below its experimental limit.

J Tandean 31 October 2014
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Conclusions

® We have explored scalar DM that is a member of a lepton flavor triplet
within the framework of leptonic minimal flavor violation.

® The theory includes the type-I seesaw mechanism and has a Z,
symmetry added to stabilize the DM candidate.

® The new scalars couple to SM particles via renormalizable interactions
and to leptons through effective dimension-6 operators.

® We considered constraints on the scalars from the Higgs data, observed
relic density, DM direct detection experiments, and searches for flavor-
violating charged-lepton decays. The allowed parameter space can be
probed further with future data.

® The new scalar interactions can roughly account for the CMS tentative
hint of h - ur~.
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