Lepton-Flavored Dark Matter with Minimal Flavor Violation

Jusak Tandean National Taiwan University

CJ Lee & JT, arXiv:1410.6803

The 4th KIAS Workshop on Particle Physics and Cosmology Seoul, Korea

31 October 2014

Outline

- Introduction
 - minimal flavor violation
- Lepton-flavored scalar DM with MFV
- Constraints
- Implications for flavor-violating Higgs decay
- Conclusions

Minimal flavor violation

- The standard model (SM) has been successful in describing data on flavor-changing neutral currents and CP violaton in the quark sector.
- This motivates the formulation of the principle of minimal flavor violation for quarks: Yukawa couplings are the only sources for the breaking of flavor and CP symmetries.

Chivukula & Georgi Hall & Randall Buras *et al.* D'Ambrosio *et al*.

Minimal flavor violation

- The standard model (SM) has been successful in describing data on flavor-changing neutral currents and CP violaton in the quark sector.
- This motivates the formulation of the principle of minimal flavor violation for quarks: Yukawa couplings are the only sources for the breaking of flavor and CP symmetries.

Chivukula & Georgi Hall & Randall Buras *et al.* D'Ambrosio *et al*.

Cirigliano et al.

- It is interesting to extend the MFV principle to the lepton sector
 - which may help pin down the origin of neutrino mass
 - although the are ambiguities in implementing leptonic MFV.
- Another major mystery is the identity of the constituents of dark matter.

Minimal flavor violation

- The standard model (SM) has been successful in describing data on flavor-changing neutral currents and *CP* violaton in the quark sector.
- This motivates the formulation of the principle of minimal flavor violation for quarks: Yukawa couplings are the only sources for the breaking of flavor and CP symmetries.

Chivukula & Georgi Hall & Randall Buras *et al.* D'Ambrosio *et al.*

Cirigliano et al.

- It is interesting to extend the MFV principle to the lepton sector
 - which may help pin down the origin of neutrino mass
 - although the are ambiguities in implementing leptonic MFV.
- Another major mystery is the identity of the constituents of dark matter.
- It is then also of interest to explore scenarios that address the neutrino and DM puzzles simultaneously.
- We do this with lepton-flavored scalar DM
 - in analogy to quark-flavored DM with MFV.

Batell, Pradler, Spannowsky Batell, Lin, Wang

Kinetic terms of SM fermions plus three RH neutrinos

- The kinetic Lagrangian of quarks and leptons, including 3 right-handed neutrinos, $\mathcal{L}_{k} = i\bar{Q}_{jL}\partial Q_{jL} + i\bar{U}_{jR}\partial U_{jR} + i\bar{D}_{jR}\partial D_{jR} + i\bar{L}_{jL}\partial L_{jL} + i\bar{\nu}_{jR}\partial \nu_{jR} + i\bar{E}_{jR}\partial E_{jR}$ where j = 1, 2, 3 are summed over, $Q_{jL} = \begin{pmatrix} U_{jL} \\ D_{jL} \end{pmatrix}$, $L_{jL} = \begin{pmatrix} \nu_{jL} \\ \ell_{jL} \end{pmatrix}$ $(U_{1}, U_{2}, U_{3}) = (u, c, t)$, $(D_{1}, D_{2}, D_{3}) = (d, s, b)$, $(E_{1}, E_{2}, E_{3}) = (\ell_{1}, \ell_{2}, \ell_{3}) = (e, \mu, \tau)$
- This is invariant under the global flavor rotations

$$\begin{split} Q_{L} &= \begin{pmatrix} Q_{1L} \\ Q_{2L} \\ Q_{3L} \end{pmatrix} \rightarrow \mathcal{V}_{Q} Q_{L} , \quad U_{R} = \begin{pmatrix} U_{1R} \\ U_{2R} \\ U_{3R} \end{pmatrix} \rightarrow \mathcal{V}_{U} U_{R} , \quad D_{R} = \begin{pmatrix} D_{1R} \\ D_{2R} \\ D_{3R} \end{pmatrix} \rightarrow \mathcal{V}_{D} D_{R} \\ \\ L_{L} &= \begin{pmatrix} L_{1L} \\ L_{2L} \\ L_{3L} \end{pmatrix} \rightarrow \mathcal{V}_{L} L_{L} , \quad \nu_{R} = \begin{pmatrix} \nu_{1R} \\ \nu_{2R} \\ \nu_{3R} \end{pmatrix} \rightarrow \mathcal{V}_{\nu} \nu_{R} , \quad E_{R} = \begin{pmatrix} E_{1R} \\ E_{2R} \\ E_{3R} \end{pmatrix} \rightarrow \mathcal{V}_{E} E_{R} \end{split}$$

where $\mathcal{V}_X \in \mathrm{U}(3)_X$

• Thus the kinetic terms are symmetric under the global group $U(3)_Q \times U(3)_U \times U(3)_D \times U(3)_L \times U(3)_\nu \times U(3)_E.$

Chivukula & Georgi

31 October 2014

Mass terms of SM fermions plus three RH neutrinos

* The Lagrangian responsible for fermion masses

$$\begin{split} \mathcal{L}_{\rm m} \ &= \ -\bar{Q}_{k,L} (Y_u)_{kl} U_{l,R} \tilde{H} - \bar{Q}_{k,L} (Y_d)_{kl} D_{l,R} H \\ &- \bar{L}_{k,L} (Y_\nu)_{kl} \nu_{l,R} \tilde{H} - \bar{L}_{k,L} (Y_e)_{kl} E_{l,R} H \ - \ \frac{1}{2} \overline{\nu_{k,R}^{\rm c}} (M_\nu)_{kl} \nu_{l,R} \ + \ {\rm H.c.} \end{split}$$

where k, l = 1, 2, 3 are summed over, $Y_{u,d,\nu,e}$ are Yukawa coupling matrices, M_{ν} is the Majorana mass matrix of the right-handed neutrinos, and H is the Higgs doublet $H = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}}(h+v) \end{pmatrix}, \quad \tilde{H} = i\sigma_2 H^*$

- ★ These mass terms explicitly break the global flavor group $U(3)_Q \times U(3)_U \times U(3)_D \times U(3)_L \times U(3)_\nu \times U(3)_E.$
- ★ The idea of minimal flavor violation presupposes that all flavor- and CP-violating interactions are linked to the known structure of Yukawa couplings.
 D'Ambrosio et al.
- ★ Accordingly, new effective interactions which violate flavor and CP symmetries must respect the symmetry properties of the Yukawa couplings.

Lepton MFV in SM plus 3 RH neutrinos

- ***** If neutrinos are Dirac fermions, the Majorana mass terms are absent, $M_{\nu} = 0$.
- ★ Then the MFV hypothesis implies that the lepton Lagrangian is formally invariant under the global group $U(3)_L \times U(3)_\nu \times U(3)_E = G_\ell \times U(1)_L \times U(1)_\nu \times U(1)_E$ where $G_\ell = SU(3)_L \times SU(3)_\nu \times SU(3)_E$.
- ★ Then $L_{k,L}$, $\nu_{k,R}$, and $E_{k,R}$ transform as fundamental representations of G_{ℓ} $L_L \rightarrow V_L L_L$, $\nu_R \rightarrow V_{\nu} \nu_R$, $E_R \rightarrow V_E E_R$, $V_{L,\nu,E} \in SU(3)$ and the Yukawa couplings are taken to be spurions transforming as $Y_{\nu} \rightarrow V_L Y_{\nu} V_{\nu}^{\dagger}$, $Y_e \rightarrow V_L Y_e V_E^{\dagger}$
- ★ We work in the basis where Y_e is diagonal, $Y_e = \sqrt{2} \operatorname{diag}(m_e, m_\mu, m_\tau)/v$ and $\nu_{k,L}$, $\nu_{k,R}$, $E_{k,L}$, and $E_{k,R}$ refer to the mass eigenstates. Hence $L_{k,L} = \begin{pmatrix} (U_{\text{PMNS}})_{kl}\nu_{l,L} \\ E_{k,L} \end{pmatrix}$, $Y_\nu = \frac{\sqrt{2}}{v}U_{\text{PMNS}}\hat{m}_\nu$

 $\hat{m}_{\nu} = \text{diag}(m_1, m_2, m_3)$ with $m_{1,2,3}$ being the light neutrino eigenmasses.

31 October 2014

Lepton MFV with Majorana neutrinos

- * If neutrinos are Majorana fermions, generally $M_{\nu} \neq 0$.
- * For $M_{\nu} \gg M_{\rm D} = v Y_{\nu} / \sqrt{2}$ the seesaw mechanism is activated involving

the 6×6 neutrino mass matrix $\mathbf{M} = \begin{pmatrix} 0 & M_{\mathbf{D}} \\ M_{\mathbf{D}}^{\mathbf{T}} & M_{\nu} \end{pmatrix}$ in the $(U_{_{\mathbf{PMNS}}}^* \nu_L^{\mathbf{c}}, \nu_R)^{\mathbf{T}}$ basis.

* The resulting matrix of light neutrino masses is

$$m_{\nu} = -\frac{v^2}{2} Y_{\nu} M_{\nu}^{-1} Y_{\nu}^{\mathrm{T}} = U_{\mathrm{pmns}} \hat{m}_{\nu} U_{\mathrm{pmns}}^{\mathrm{T}}$$

now U_{PMNS} containing $P = \text{diag}(e^{i\alpha_1/2}, e^{i\alpha_2/2}, 1)$ multiplied from the right, $\alpha_{1,2}$ being the Majorana phases.

* Thus Y_{ν} needs to be modified, and one can instead take Y_{ν} to be

$$Y_{
u} \,=\, rac{i\sqrt{2}}{v} U_{_{
m PMNS}} \hat{m}_{
u}^{1/2} OM_{
u}^{1/2}$$

Casas & Ibarra

where O satisfies $OO^{T} = 1$ and $M_{\nu} = \text{diag}(M_1, M_2, M_3)$.

Lagrangians beyond SM with MFV built-in

- To have new interactions, one inserts $Y_{\nu,e}^{(\dagger)}$ and their products among SM and new fields to form operators invariant under $G_{\ell} = \mathrm{SU}(3)_L \times \mathrm{SU}(3)_{\nu} \times \mathrm{SU}(3)_E$ and singlet under the SM gauge group.
- Of interest here are $\mathbf{A} = Y_{\nu}Y_{\nu}^{\dagger}$ and $\mathbf{B} = Y_{e}Y_{e}^{\dagger}$
- Assuming neutrinos to be Majorana fermions, we take $\nu_{k,R}$ to be degenerate, with $M_{\nu} = \mathcal{M}1$, and O real.

Hence $\mathbf{A} = Y_{\nu}Y_{\nu}^{\dagger} = \frac{2}{v^2}\mathcal{M}U_{_{\mathrm{PMNS}}}\hat{m}_{\nu}U_{_{\mathrm{PMNS}}}^{\dagger}$ with $\hat{m}_{\nu} = \operatorname{diag}(m_1, m_2, m_3)$

Lepton-flavored scalar triplet

* SM-gauge-singlet scalar G_{ℓ} -triplet $\tilde{s} = \begin{pmatrix} \tilde{s}_1 \\ \tilde{s}_2 \\ \tilde{s}_3 \end{pmatrix} \sim (3, 1, 1)$

where $G_{\ell} = \mathrm{SU}(3)_L \times \mathrm{SU}(3)_{\nu} \times \mathrm{SU}(3)_E$

- \star For DM stability, invoke a Z_2 symmetry: $\tilde{s} \rightarrow -\tilde{s}$
- \star Scalar potential in renormalizable Lagrangian

 $\mathcal{V} = \mu_{H}^{2} H^{\dagger} H + \tilde{s}^{\dagger} \mu_{s}^{2} \tilde{s} + \lambda_{H} (H^{\dagger} H)^{2} + 2 H^{\dagger} H \tilde{s}^{\dagger} \Delta_{Hs} \tilde{s} + (\tilde{s}^{\dagger} \Delta_{ss} \tilde{s})^{2}$ $\supset \tilde{s}^{\dagger} \left(\mu_{s0}^{2} \mathbb{1} + \mu_{s1}^{2} \mathsf{A} + \mu_{s2}^{2} \mathsf{A}^{2} \right) \tilde{s} + 2 H^{\dagger} H \tilde{s}^{\dagger} \left(\lambda_{s0} \mathbb{1} + \lambda_{s1} \mathsf{A} + \lambda_{s2} \mathsf{A}^{2} \right) \tilde{s}$ with $\mathsf{A} = Y_{\nu} Y_{\nu}^{\dagger}$ assumed to have elements \gg than those of $\mathsf{B} = Y_{e} Y_{e}^{\dagger}$ and the Higgs doublet $H = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{c}} (h+v) \end{pmatrix}$

- ***** Since A is Hermitian, $A = \mathcal{U} \operatorname{diag}(\hat{A}_1, \hat{A}_2, \hat{A}_3) \mathcal{U}^{\dagger}$ where \mathcal{U} is a unitary matrix
- ★ In terms of mass eigenstates $S = \begin{pmatrix} S_1 \\ S_2 \\ S_3 \end{pmatrix} = \mathcal{U}^{\dagger} \tilde{s}$

$$\begin{split} \mathcal{L} \, \supset \, -m_{S_k}^2 S_k^* S_k \, - \, \lambda_k \, (h^2 + 2hv) S_k^* S_k \, - \, (\lambda'_k \, S_k^* S_k)^2 \\ \text{where} \quad m_{S_k}^2 = \mu_k^2 + \lambda_k v^2, \quad \mu_k^2 = \mu_{s0}^2 + \mu_{s1}^2 \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2}^2 \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2} \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2} \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2} \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s0} + \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2} \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2} \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2} \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda_{s1} \hat{\mathsf{A}}_k + \mu_{s2} \hat{\mathsf{A}}_k + \mu_{s2} \hat{\mathsf{A}}_k^2, \quad \lambda_k = \lambda$$

DM relic density & annihilation

 $\star \text{ Relic density } \quad \Omega \hat{h}^2 = \frac{2.14 \times 10^9 \, x_f/\text{GeV}}{\sqrt{g_*} \, m_{\text{Pl}}(\hat{a} + 3\hat{b}/x_f)} \ , \qquad x_f = \ln \frac{0.038 \, m_{S_3} m_{\text{Pl}}(\hat{a} + 6\hat{b}/x_f)}{\sqrt{g_* \, x_f}}$

where $\sigma_{ann}v_{rel}^2 = \hat{a} + \hat{b}v_{rel}$ is the rate of $S_3^*S_3$ annihilation into SM particles.

 \star Annihilation diagrams with h- \tilde{s} renormalizable couplings

 \star Annihilation diagrams with lepton- \tilde{s} effective couplings

Higgs experiment & DM direct search constraints

• If $2m_{S_k} < m_h$, the hS_k couplings must satisfy the limit on the branching ratio $\mathcal{B}(h \rightarrow \text{invisible/exotic}) < 19\%$ from collider data.

Falkowski, Riva, Urbano Giardino *et al.* Belanger *et al.* Cheung, Lee, Tseng

$$\mathcal{B}(h \to SS) = \frac{\sum_{k} \Gamma_{h \to S_{k}^{*}S_{k}}}{\Gamma_{h}^{\text{SM}} + \sum_{k} \Gamma_{h \to S_{k}^{*}S_{k}}} , \quad \Gamma_{h \to S_{k}^{*}S_{k}} = \frac{\lambda_{3}^{2}v^{2}}{4\pi m_{h}}\sqrt{1 - \frac{4m_{S_{k}}^{2}}{m_{h}^{2}}} , \quad m_{h} = 125.1 \text{ GeV} , \quad \Gamma_{h}^{\text{SM}} = 4.08 \text{ MeV}$$

• DM direct search constraints apply only to the hS_3 coupling, λ_3 .

Results for λ_3

• We assume the neutrino mass inverted hierarchy with $m_3 = 0$, require the largest eigenvalue of A to have a size of 1, and pick $\mu_{s0}^2 + \lambda_{s0}v^2 = \mu_{s1}^2 + \lambda_{s1}v^2 = \mu_{s2}^2 + \lambda_{s2}v^2$

for
$$m_{S_k}^2 = \mu_{s0}^2 + \lambda_{s0}v^2 + \frac{2(\mu_{s1}^2 + \lambda_{s1}v^2)\mathcal{M}m_k}{v^2} + \frac{4(\mu_{s2}^2 + \lambda_{s2}v^2)\mathcal{M}^2m_k^2}{v^4}$$

• Values of $|\lambda_3|$ satisfying the relic constraint (green solid curve) compared with upper limits on $|\lambda_3|$ from Higgs invisible/exotic decay data (dotted black curve) and from LUX (red dashed curve).

Effective dimension-six lepton-S couplings

Effective dimension-6 operators satisfying the MFV requirement and coupling SM leptons to \tilde{s}

$$\mathcal{L}' = rac{C_{bdkl}^{\scriptscriptstyle L}}{\Lambda^2} O_{bdkl}^{\scriptscriptstyle L} + rac{C_{bdkl}^{\scriptscriptstyle R}}{\Lambda^2} O_{bdkl}^{\scriptscriptstyle R} + \left(rac{C_{bdkl}^{\scriptscriptstyle LR}}{\Lambda^2} O_{bdkl}^{\scriptscriptstyle LR} + ext{ H.c.}
ight)$$

b, d, k, l = 1, 2, 3 are summed over,

$$\begin{split} C_{bdkl}^{\scriptscriptstyle L} &= (\Delta_{\scriptscriptstyle LL})_{bd} (\Delta_{\scriptscriptstyle SS})_{kl} + (\Delta_{\scriptscriptstyle LS})_{bl} (\Delta_{\scriptscriptstyle SL})_{kd} + (\Delta_{\scriptscriptstyle LS})_{kd} (\Delta_{\scriptscriptstyle SL})_{bl}, \quad O_{bdkl}^{\scriptscriptstyle L} &= i \bar{L}_{b,L} \gamma^{\rho} L_{d,L} \tilde{s}_{k}^{\ast} \overleftrightarrow{\partial}_{\rho} \tilde{s}_{l} \\ C_{bdkl}^{\scriptscriptstyle R} &= \delta_{bd} (\Delta_{\scriptscriptstyle SS}')_{kl}, \qquad \qquad O_{bdkl}^{\scriptscriptstyle R} &= i \bar{E}_{b,R} \gamma^{\rho} E_{d,R} \tilde{s}_{k}^{\ast} \overleftrightarrow{\partial}_{\rho} \tilde{s}_{l} \\ C_{bdkl}^{\scriptscriptstyle LR} &= (\Delta_{\scriptscriptstyle LY} Y_{e})_{bd} (\Delta_{\scriptscriptstyle SS}')_{kl} + (\Delta_{\scriptscriptstyle LS}')_{bl} (\Delta_{\scriptscriptstyle SY} Y_{e})_{kd}, \qquad O_{bdkl}^{\scriptscriptstyle LR} &= \bar{L}_{b,L} E_{d,R} \tilde{s}_{k}^{\ast} \tilde{s}_{l} H \end{split}$$

The mass scale Λ characterizes the underlying heavy new physics.

• Assume $\Delta = \xi_1 \mathbb{1} + \xi_2 \mathbb{A} + \xi_4 \mathbb{A}^2$

Effective dimension-six lepton-S couplings

Effective dimension-6 operators satisfying the MFV requirement and coupling SM leptons to \tilde{s}

$$\mathcal{L}' = rac{C_{bdkl}^{\scriptscriptstyle L}}{\Lambda^2} O_{bdkl}^{\scriptscriptstyle L} + rac{C_{bdkl}^{\scriptscriptstyle R}}{\Lambda^2} O_{bdkl}^{\scriptscriptstyle R} + \left(rac{C_{bdkl}^{\scriptscriptstyle LR}}{\Lambda^2} O_{bdkl}^{\scriptscriptstyle LR} + ext{ H.c.}
ight)$$

b, d, k, l = 1, 2, 3 are summed over,

$$\begin{split} C_{bdkl}^{\scriptscriptstyle L} &= (\Delta_{\scriptscriptstyle LL})_{bd} (\Delta_{\scriptscriptstyle SS})_{kl} + (\Delta_{\scriptscriptstyle LS})_{bl} (\Delta_{\scriptscriptstyle SL})_{kd} + (\Delta_{\scriptscriptstyle LS})_{kd} (\Delta_{\scriptscriptstyle SL})_{bl}, \quad O_{bdkl}^{\scriptscriptstyle L} = i \bar{L}_{b,L} \gamma^{\rho} L_{d,L} \tilde{s}_{k}^{\ast} \overleftrightarrow{\partial}_{\rho} \tilde{s}_{l} \\ C_{bdkl}^{\scriptscriptstyle R} &= \delta_{bd} (\Delta_{\scriptscriptstyle SS}')_{kl}, \qquad O_{bdkl}^{\scriptscriptstyle R} = i \bar{E}_{b,R} \gamma^{\rho} E_{d,R} \tilde{s}_{k}^{\ast} \overleftrightarrow{\partial}_{\rho} \tilde{s}_{l} \\ C_{bdkl}^{\scriptscriptstyle LR} &= (\Delta_{\scriptscriptstyle LY} Y_{e})_{bd} (\Delta_{\scriptscriptstyle SS}'')_{kl} + (\Delta_{\scriptscriptstyle LS}')_{bl} (\Delta_{\scriptscriptstyle SY} Y_{e})_{kd}, \qquad O_{bdkl}^{\scriptscriptstyle LR} = \bar{L}_{b,L} E_{d,R} \tilde{s}_{k}^{\ast} \tilde{s}_{l} H \end{split}$$

The mass scale Λ characterizes the underlying heavy new physics.

• Assume $\Delta = \xi_1 \mathbb{1} + \xi_2 \mathbb{A} + \xi_4 \mathbb{A}^2$

6

For simplicity, take

$$C_{bdkl}^{\scriptscriptstyle LR} = \frac{\sqrt{2}\,\kappa_{_{LR}}\,m_{_{\ell_d}}}{v}\,\delta_{_{bl}}\delta_{_{dk}}\,, \qquad C_{bdkl}^{\scriptscriptstyle L} = 2\kappa_{_L}\delta_{_{bl}}\delta_{_{dk}}\,, \qquad C_{bdkl}^{\scriptscriptstyle R} = \kappa_{_R}\delta_{_{bd}}\delta_{_{kl}}\,$$

Effective couplings satisfying relic data

- The effective dimension-six operators (O^L , O^R , and O^{LR}) contribute to S_3 annihilations into $\ell_1 \ell_2$ and (for $O^{L,R}$) $v_1 v_2$ pairs.
- They need to be consistent with the observed relic abundance.

PDG 2014 $\Omega \hat{h}^2 = 0.1198 \pm 0.0026$

Effective lepton-S couplings satisfying relic data

- The effective dimension-six operators (O^L , O^R , and O^{LR}) contribute to S_3 annihilations into $\ell_1 \ell_2$ and (for $O^{L,R}$) $v_1 v_2$ pairs.
- They need to be consistent with the observed relic abundance.

• In the orange region, corresponding to $2\pi\Lambda/|\kappa|^{1/2} < m_{S_2}$, the effective theory description breaks down.

Constraints from flavor-changing lepton decays

• The effective dimension-six $\ell' \ell S'S$ ouplings can also induce, at one loop, flavor-changing lepton decays $\ell_1 \rightarrow \ell_2 \ell_3 \ell_4$

Constraints from flavor-changing lepton decays

• The effective dimension-six $\ell' \ell S' S$ ouplings can also induce, at one loop, flavor-changing lepton decays $\ell_1 \rightarrow \ell_2 \ell_3 \ell_4$

• The κ_{LR} contributions consistent with the relic density data are well above the lower limit inferred from experimental bounds on these decays.

Constraints from flavor-changing lepton decays

• The effective dimension-six $\ell' \ell S'S$ ouplings can also induce, at one loop, flavor-changing lepton decays $\ell_1 \rightarrow \ell_2 \ell_3 \ell_4$

- The κ_{LR} contributions consistent with the relic density data are well above the lower limit inferred from experimental bounds on these decays.
- But the corresponding κ_L contributions are in conflict with the flavor-violating decay data if $m_{S_k} > 500$ GeV.
 - The red solid curve indicates the lower limit from $\mathcal{B}(\mu \rightarrow 3e)$ data.

Potential implications for $h \rightarrow \mu \tau$

- CMS recently observed a slight excess of $h \rightarrow \mu \tau$ at 2.5 σ
 - If a signal, $\mathcal{B}(h \to \mu \tau) = (0.89^{+0.40}_{-0.37})\%$
 - If a statistical fluctuation, $\mathcal{B}(h \rightarrow \mu \tau) < 1.57\%$ at 95% CL.
- Other data from ATLAS & CMS, respectively:
 - $h \to \tau \tau$ $\sigma / \sigma_{_{\rm SM}} = 1.42^{+0.44}_{-0.38}$ and 0.91 ± 0.27
 - $\mathcal{B}(h \to \mu \bar{\mu}) < 1.5 \times 10^{-3}$ and 1.6×10^{-3}

Potential implications for $h \rightarrow \mu \tau$

- CMS recently observed a slight excess of $h \rightarrow \mu \tau$ at 2.5 σ
 - If a signal, $\mathcal{B}(h \to \mu \tau) = (0.89^{+0.40}_{-0.37})\%$
 - If a statistical fluctuation, $\mathcal{B}(h \rightarrow \mu \tau) < 1.57\%$ at 95% CL.
- Other data from ATLAS & CMS, respectively:
 - $h \to \tau \tau$ $\sigma / \sigma_{_{\rm SM}} = 1.42^{+0.44}_{-0.38}$ and 0.91 ± 0.27
 - $\mathcal{B}(h \to \mu \bar{\mu}) < 1.5 \times 10^{-3}$ and 1.6×10^{-3}
- At one loop, S_k can contribute to $h \rightarrow \mu \tau$ mainly via

Potential implications for $h \rightarrow \mu \tau$

- CMS recently observed a slight excess of $h \rightarrow \mu \tau$ at 2.5 σ
 - If a signal, $\mathcal{B}(h \to \mu \tau) = (0.89^{+0.40}_{-0.37})\%$
 - If a statistical fluctuation, $\mathcal{B}(h \rightarrow \mu \tau) < 1.57\%$ at 95% CL.
- Other data from ATLAS & CMS, respectively:
 - $h \to \tau \tau$ $\sigma / \sigma_{\rm SM} = 1.42^{+0.44}_{-0.38}$ and 0.91 ± 0.27
 - $\mathcal{B}(h \to \mu \bar{\mu}) < 1.5 \times 10^{-3} \text{ and } 1.6 \times 10^{-3}$
- At one loop, S_k can contribute to $h \rightarrow \mu \tau$ mainly via

- The S_k contribution yields
 - 0.52% < $\mathcal{B}(h \to \mu \tau)$ < 0.79% with $-\lambda_{1,2} \sim 2.4 7.2$ and $\lambda_3 \sim 0$ if $\kappa_{LR} = 1$ and $(m_{S_k}, \Lambda) \sim (70-200, 78)$ GeV.
 - $= 1.6 < \Gamma_{h \to \tau \bar{\tau}} / \Gamma_{h \to \tau \bar{\tau}}^{\rm SM} < 1.8$
 - $\mathcal{B}(\tau \rightarrow \mu \gamma)$ over 30 times below its experimental limit.

31 October 2014

Conclusions

- We have explored scalar DM that is a member of a lepton flavor triplet within the framework of leptonic minimal flavor violation.
- The theory includes the type-I seesaw mechanism and has a Z_2 symmetry added to stabilize the DM candidate.
- The new scalars couple to SM particles via renormalizable interactions and to leptons through effective dimension-6 operators.
- We considered constraints on the scalars from the Higgs data, observed relic density, DM direct detection experiments, and searches for flavorviolating charged-lepton decays. The allowed parameter space can be probed further with future data.
- The new scalar interactions can roughly account for the CMS tentative hint of $h \rightarrow \mu \tau$.